

Rob Weeder
Service Business Development Manager
GEA Heating & Refrigeration Division

▪ Name: Rob Weeder
▪ Company: GEA Heating & Refrigeration Division
▪ Role: Service Business Development Manager
▪ Located: 's-Hertogenbosch, The Netherlands
▪ Working for GEA for more than 20 years,
 • 4 years in (global) Service Business Development
▪ General goal: Supporting our local offices to improve customer satisfaction.

1

Agenda

01 Energy Efficiency installations

02 Energy Efficiency compressors

03 Digital Solutions & Remote Monitoring

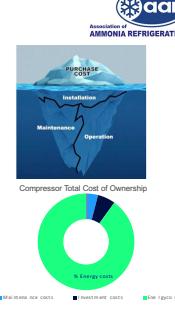
2

1

2

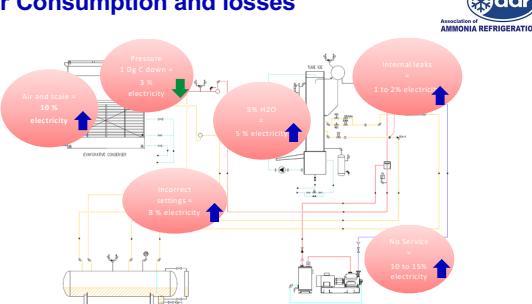
Power consumption
Average power consumption food industry

Cold storage	Up to 70 – 80% of total electrical power consumption
Ice business	Approx. 75 – 85% of total electrical power consumption
Dairy / Brewery	Approx. 30 – 40% of total electrical power consumption
Refrigeration plant power consumption	Compressors 60 – 80% Condensers 15 – 30% Pumps, aircoolers etc. 5 – 20%

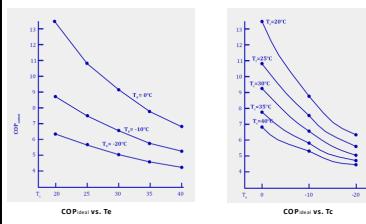


3

Industrial Refrigeration Energy efficiency


Main influencing factors

- Efficient system design
- Usage of energy efficient components
 - Condenser
 - Heat Exchangers
 - Pump, Valves and Fans
 - Compressors
- Using advanced control logic
- Proper installation and commissioning
 - 2 out of 3 industrial refrigeration plants are not commissioned in an optimal way (no heat load at the time of commissioning)
 - There is no focus on energy saving during commissioning
- Solid maintenance plan (...and execution of it)
 - Maintain compressors
 - Maintain heat exchangers
 - Maintain piping and valves
 - Maintain electrical components
 - Maintain chemical purity of working fluids
- If available, benchmark performance to best in class.
 - For Cold store application, as example, use 5% (Specific Energy Consumption)
 - Rule of thumb: a 100.000m³ coldstore should aim for 100Wh/m³/yr


4

Power Consumption and losses

5

Settings (or finetuning)

Rules of thumb:

- 1K Discharge Pressure – 3-5% Energy Saving
- Saving energy, saving costs, reducing CO₂ footprint
- 1K Suction Pressure – 3% Energy Saving

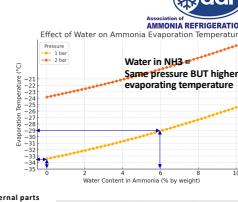
6

5

1

Water (H₂O) in ammonia

1% water ~ 1% increased Powerconsumption


5% water of 500kW motor = 25 kW
16 h/day = 400 kWh
365 days = 146,000 kWh
8 INR/kWh = 1,168,000 INR/year (Euro 11.097)

This is excluding effects like:

- Additional electricity from fans and pump on, evaporative condenser plus water and chemical.
- Sludge / moisture in system, increased wear and tear on internal parts
- Lubrication issues

Effect of Water on Ammonia Evaporation Temperature

Water in NH₃ = Same pressure BUT higher evaporating temperature

8 INR/kWh = 1,168,000 INR/year (Euro 11.097)

7

None condensable gasses

aar
Association of AMMONIA REFRIGERATION

Most often causes of failures are missing or incorrect maintenance:

- One time no vacuum of compressor = degrees of increased condensing temperature
- 1 Dg increase = 3.5% increased electricial consumption of compressor

No vacuum after service
= 1 compressor volume of air
= 1 volume of condenser =
= 10 % increased electricity

8

Other variables

aar
Association of AMMONIA REFRIGERATION

Recommissioning

- Up to 8% due to incorrect settings or adjustment of valves

Parallel operation

- If units stand alone (not talking together): up to 10% increased power consumption due to load/onload

Condenser control

- Saving in 10 to 15% range due to better control (Floating control)

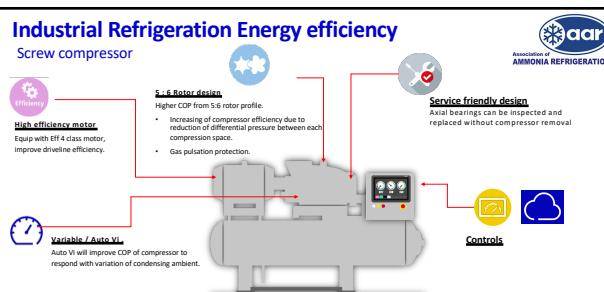
Oil filters and coalescent filters

- Oil carry over increases due to coalescer issues.
- Clogged result in approx. 0.5 bar additional pressure drop resulting in 2.5 % additional motor power consumption
- More oil in the system resulting in oil layer on evaporators resulting in 10 to 20% reduced heat transfer resulting in 3 % increased motor power

Regularly drain oil from your system

9

Agenda


aar
Association of AMMONIA REFRIGERATION

- 01 Energy efficiency installations
- 02 Energy efficiency compressors
- 03 Digital Solutions & Remote Monitoring

10

Industrial Refrigeration Energy efficiency

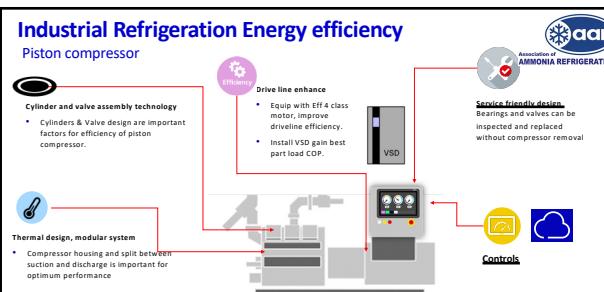
Screw compressor

High efficiency motor
Equip with IE4 class motor, improve driveline efficiency.

S&E motor design
Higher COP due to motor profile.

- Increasing of compressor efficiency due to reduction of differential pressure between each compression stage.
- Gas pulsation protection.

Variable / Auto V.
Auto V will improve COP of compressor to respond with variation of condensing ambient.


Service friendly design
Axial bearings can be inspected and replaced without compressor removal

Controls

11

Industrial Refrigeration Energy efficiency

Piston compressor

Cylinder and valve assembly technology

- Cylinders & Valve design are important factors for efficiency of piston compressor.

Drive line enhance

- IE4 class motor, improve driveline efficiency.
- Install VSD gain best part load COP.

Thermal design, modular system

- Compressor housing and split between suction and discharge is important for optimum performance

Service friendly design
Bearings and valves can be inspected and replaced without compressor removal

Controls

12

Industrial Refrigeration Energy efficiency

Screw compressor

Maintenance

If the manufacturer is chosen, of course it is important to keep the compressor in excellent shape.

Follow manufacturers prescription:

- Regular check oil levels
- Register oil carry-over, increased oil carry-over generally means loss of efficiency
- Regularly check oil quality (test sample)
- Clean gas suction filter
- Clean refrigerant filter(s)
- Check shaft seal and leakage rate, replace when necessary
- Measure bearing wear by face gap measurement, replace bearing when required
- Use original spare parts, these are tested and specially selected for the application.

Wear of screw compressors

- Above 10 to 15 years efficiency drops with 1% per year. E.g., a 20 years old screw will have a average 10% efficiency loss.
- Energy can be irreversible if housing / rotors are wearing.
- Maintain, monitor and if necessary, even replace / exchange compressor

13

Industrial Refrigeration Energy efficiency

Piston compressor

Maintenance

If design / manufacturer is chosen, of course it is important to keep the compressor in excellent shape.

Follow manufacturers prescription:

- Regularly check oil levels
- Register oil carry-over, increased oil carry-over generally means loss of efficiency
- Regularly check oil quality (test sample)
- Clean gas suction filter
- Clean refrigerant filter(s)
- Check shaft seal and leakage rate, replace when necessary
- As prescribed, replace valves, piston rings, bearings etc. depending on running hours / running conditions
- Use original spare parts, these are tested and specially selected for the application.

Wear of piston compressors

- Wear of piston compressor suction or discharge valves gives approx. 1 to 2 % efficient loss
- Replacement of wear parts can restore this efficiency loss.

14

Agenda

01 Energy efficiency installations

02 Energy efficiency compressors

03 Digital Solutions & Remote Monitoring

15

Digital Solutions & Remote Monitoring

IoT Solutions for Industrial Refrigeration & Heating Equipment

Monitoring Equipment Status

Tracking the status of the refrigeration equipment, ensure efficient and reliable operation.

Predicting Failures

The software can infer potential equipment failures, allowing end-users & contractors to take preventive actions and avoid downtime.

Energy Efficiency

Deliver measurable energy efficiency savings up to 20%, while reducing Carbon Footprint as well.

Customer Satisfaction

Providing reliable service and quickly addressing issues increases customer satisfaction

Reduced Operational Costs

Improved monitoring and maintenance lead to more reliable service, quick issue resolution, and better workload management, enhancing overall efficiency.



<img alt="Digital interface

Thank you for your
attention