
Types of compressors used in Ammonia Refrigeration

• There are mainly two types of compressor's are used in Ammonia i.e. Screw and Reciprocating

OPERATOR RESPONSIBILITIES **What Operators Must Know**

- The basic fundamentals of refrigeration, particularly the relationship between the temperature and pressure of ammonia. There is no compulsion of that the operator needs to have the capabilities to design a system, but rather that he should have sufficient knowledge:
- A. To operate the system safely.
- B. To understand the operation and function of each component.
- C. To be aware of the relationship between the various components in the system.

OPERATOR RESPONSIBILITIES What Operators Must Know

- The Compressor
- › Each compressor manufacturer specifies application limits in which the compressor may be operated safely. The most important limits are protected by safety controls and the operator must make himself familiar with the operation, set point and function of the following:
- A. Low (suction gas) pressure cut-out
- B. High (discharge gas) pressure cut-out
- . C. Low differential oil pressure cut-out
- D. High oil temperature cut-out
- E. High discharge temperature cut-out
- F. Any additional safety controls which may be fitted

OPERATOR RESPONSIBILITIES What Operators Must Know

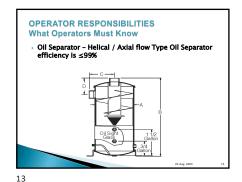
- › Oil In Refrigeration System
- Mhere the refrigerant is essential for the cooling purpose of a refrigeration system, the refrigeration oil is also crucial for the correct & smooth functioning of the
- > Oil used in compressor for reduce friction, prevent wear & tear, capacity control of compressor and act as a seal between the high and low pressure sides in screw
- Oil should not be travel in other parts of system other than Compressor to oil separator & back to compressor.

10

12

OPERATOR RESPONSIBILITIES What Operators Must Know


Oil Separator


11

- Operator should know about the function of the oil separator installed in our system. How it function, what accessories incorporated in it and frequency of the checking the accessories installed.
- Correct oil separator sizing is essential for proper oil separation and minimal pressure drop across the separator.
- As oil is act as insulation in colder area which reduces the refrigerating effect, to avoid oil carry over to other parts of system it requires good quality & efficient oil separators.

OPERATOR RESPONSIBILITIES What Operators Must Know

Oil Separator - Demister Type Oil Separator efficiency

OPERATOR RESPONSIBILITIES
What Operators Must Know

- Automatic Control Valves
- The basic function of control valves is to regulate automatically the pressure, temperature, level and feed rate of refrigerant in the system. It is the responsibility of the operator to know:
- A. How a valve functions
- B. What the valve regulates
- . C. How to adjust the valve
- › D. What happens when the valve is opened or closed
- › E. What happens when the valve is bypassed or isolated
- F. What happens during a power failure

12 Aug. 2023

aar

⊕aar

D. How to determine whether a valve is opened or closed

15

16

OPERATOR RESPONSIBILITIES
What Operators Must Know

- Pressure Relief Valves
- In order to prevent unduly high pressures from causing rupture of components within the system, a number of springloaded pressure relief valves are normally provided. The performance of these pressure relief valves should be checked annually. Each operator should know:
- › A. The location of each pressure relief valve
- B. The correct relief setting for each valve
- C. What part of the system the valve is designed to protect
- D. What action to take should the relief valve operate or fail to operate

3 Ave. 2022

18

OPERATOR RESPONSIBILITIES
What Operators Must Know

OPERATOR RESPONSIBILITIES

These valves are installed in a system in order to isolate

may be manually operated, electrically operated or

pneumatically operated. Each operator must know:

B. What the effect is of opening or closing each valve

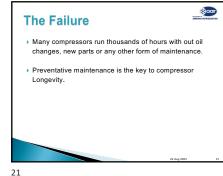
certain components or to stop the flow of refrigerant. They

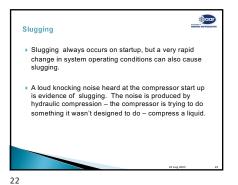
› C. Whether a valve should normally be in the open or closed

What Operators Must Know

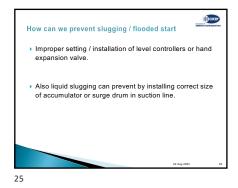
A. Where each valve is located

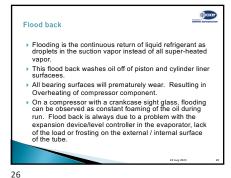
Isolating Valves

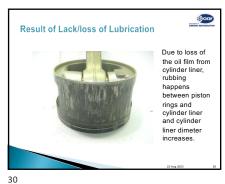

(aar


- Electrical Controls
- Modern refrigeration system incorporates many controls like PLC, fuses, safety switches, capacity control switches, relays, timers, etc. these may be grouped together in a control panel.
 It is the responsibility of each operator to fully understand:
- A. The purpose of each control
- » B. What each control is designed to protect
- C. What to do in case of power failure
- D. What sequence of action to take to shut down the plant
- > E. What sequence of action to take to start up the plant

17







(g) aar Result of Flood back Liquid flooding Causes radial forces on the rotors and lend them to seize in the housing on the flange and slider

(S) aar How can we prevent Liquid flood back Avoid low load on the evaporator. Oversized Expansion device Maintaining Head pressure and low pressure according to the system requirement ▶ Low flow through Evaporator Oversized system

27

(g) aar Lack/loss of Lubrication > Excessive oil throw out of compressor. Other causes of lack of lubrication could be as simple as not enough oil in the crankcase. During operation, always oil leave should be visible in the crankcase, separate oil from ammonia in oil separator and returning to the compressor at the same rate that it left the compressor. 29

28

(g) aar Contamination in the system > Contamination was found to be the major cause of compressor failure. Refrigeration system should contains only two things inside is refrigerant and oil. Anything else is a contaminant!

33

()aar Contamination in the system > The presence of water in a system can lead to other contaminations due to the formation of oxidation, corrosion, the refrigerant decomposition. Chemical breakdown results from excessive heat , results in oil and refrigerant breakdown, Ferric oxide (Fe2O3) - (Red iron oxide) or Ferrous oxide (Fe2O4) -(iron oxide black), acid formation creates higher wear of the bearing surfaces.

34

(aar Over Heating · If the heat Is high enough, the oil breaks down · Compressors should operate within the safe limits of the discharge pressure/temperature. · Oil and refrigerant break down In severe overheating and create CARBON and ACIDS, Which can cause harm throughout the entire system.

38

40

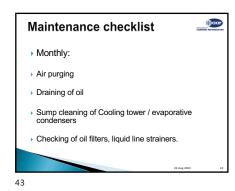
42

gaar Preventative maintenance The most important factor contributing to a safe operation may be the operator's knowledge of preventive maintenance. Each component of a system requires routine checking, cleaning and possible replacement. Periodic checking / changing of oil Check pressure drops across condensers and chillers Draining of oil from various components Purging of non-condensable gases Checking of safeties Removal of scales from condensers Checking of Vibration levels in the compressor Annual checking of the compressors as per manufacturers auidelines.

Daily:

41

- HP, LP & OP pressure
- > Refrigerant level and oil level


Maintenance checklist

- > Water level in cooling tower / evaporative condenser
- Flow of media (water/brine/air) to be cooled
- > Specific gravity of brine in case of brine chiller.

Maintenance checklist

- Weekly:
- > Cleaning of filters, strainers of pumps.
- Checking tension of compressor drive belts.
- > Checking the proper oil return to the compressor from oil separator.

⊕aar Maintenance checklist ▶ Half Yearly: ▶ Checking of earth leakages. Cleaning of switch gear contacts and electrical > Checking of compressor and motor alignment. 45

()aar Maintenance checklist Yearly: Replacement/checking of internal parts of compressor Pressure testing of receiver, oil separator & condenser – factory act. Painting of equipments and pipelines as per standard colour code with arrow mark. Pipe line insulation repair / replacement. 46

(g) aar **THANK YOU**